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Outline 

• Basics : Planck’s law, Wien’s law … 

• Emissivity-Temperature Separation problem (ETS) 

• Pyrometry 

• single-color, bispectral pyrometry 

• multispectral pyrometry 

• ETS in airborne/satellite remote sensing 

• atmosphere compensation 

• spectral smoothness method 

• multi-temperature method 

• Bayesian perspective 

• Conclusion 
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Foreword 

“Success Is Going from Failure to Failure Without Losing Your 

Enthusiasm” (statement erroneously attributed to W. Churchill -

http://quoteinvestigator.com/2014/06/28/success/) 

This presentation reviews a series of methods aimed at providing a measurement 

of surface temperature through EM radiation sensing. A substantial number of 

them prove to be ineffective or, better said, show unpredictable success/failure, 

depending on the emissivity spectrum of the sensed material. 

Listing only successful achievements would amount to sending a message as: 

“All problems have been solved, don’t bother, you just have to implement those 

solutions!” 

For the present topic, this cannot be the case. 

Spending some time for analyzing former failures is important for three reasons:  

1- the poor performance of a given method is not always manifest at the onset;  

2- if this enabled you to avoid making the same mistakes and to save time! 

3- it shows that research is still needed on this subject!… 
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Thermal radiation 

Matter emits EM radiation 

Intensity increases with 

temperature 

Monitoring of emitted 
radiation offers a mean for 
temperature measurement 

10nm 100nm 1µm 10µm 100µm 1mm 10mm 100mm 1m 10m 100m 1km 

 X 

UV 

Visible 

IR 

Microwaves 
Radio 

MidWave = 3 - 5,5 µm LongWave = 7 - 14 µm 
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Thermal radiation sensing 

Advantages of the radiation sensing method : 
- non-contact 

- surface to sub-surface probing (opaque or semi-transparent material) 

- rapid : detectors with up to GHz bandwidth (and even higher) 

- long distance measurement (airborne and satellite remote sensing, 
astronomy) 

- point detectors (local measurement or 2D images by mechanical scanning) 
to focal plane arrays (instantaneous 2D images) 

- spectral measurement also allows materials discrimination 
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Basics (1/4) 

• Blackbody: perfect absorber, perfect emitter 

• Spectral radiance given by Planck’s law: 

• Wien’s approximation: 
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given by Wien’s displacement law: 

µmKT 2898max 

Error of Wien’s approximation is less 

than 1% provided that  µmKT 3124
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Basics (2/4) 

Wavelength selection for temperature measurement 

• Maximum of radiance given by Wien’s displacement law: 

 

 

• Radiance sensitivity to temperature (absolute sensitivity): 
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Basics (3/4) 

Wavelength selection for temperature measurement 

 

 

• Radiance sensitivity to temperature (relative sensitivity): 

300K 

500K 

700K 

900K 

1100K 

Advantage of performing 

measurements at short wavelengths 

(sensitivity is nearly in inverse 

proportion to wavelength) 

 

Interest in visible pyrometry or even in 

UV pyrometry ? 

T

B

B 

1

At T = 300K : 

2%/K radiance increase at 8µm  

16%/K radiance increase at 1µm 
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Basics (4/4) 

Real materials (non-perfect emitters) 

• with respect to blackbody, the emitted radiance                       is reduced 

by a factor called emissivity: 

 

• emissivity depends on wavelength, temperature, and direction 

• second Kichhoff’s law between emissivity and absorptance:  

 

 

 

 

• relation between absorptance and directional hemispherical reflectance 

from the energy conservation law for an opaque material (the energy that 

is not absorbed by the surface is reflected in all directions): 

 

 

 

      10,,,,,,,   TBTTL

  ,,,TL

    ,,,, 

    1,,,, '   





Emissivity can be inferred from a reflectance measurement (integrating sphere) 

Drawback : need to bring the integrating sphere close to the surface 
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MidWave: 3 - 5,5 µm 

LongWave: 7 - 14 µm 

                            

ShortWave: 0.7 - 2,5 µm 

Radiation sensing is dependant on the atmosphere transmission, 
i.e. on the absorption bands of air constituents : H2O, CO2, O3, CH4, … 
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Contributors to the optical signal  

• the surface reflects the incoming radiation (non-perfect absorber) 

• downwelling radiance:  

• bidirectional reflectance : 

• the radiation leaving the surface is attenuated along the optic path (absorption, 

scattering by atmosphere constituents: gases, aerosols – dust, water/ice particles) 

• transmission coefficient : 

• atmosphere emits and scatters radiation towards the sensor 

• upwelling radiance 

 

        ,,,,,,,,,,  LTLTLs
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 ii  ,,,,''
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at-sensor radiance 

surface leaving radiance 
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First considered case  

     TBTLs ,,,,,,  

• Pyrometry of high temperature surfaces 

• sensor at close range (limited or even negligible atmosphere 

contributions) 

• environment much colder than the analyzed surface  
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• Airborne/satellite remote sensing 
• hypothesis of lambertian surface: isotropic reflectance                isotropic 

emissivity 

• mean downwelling radiance    

• need for atmosphere compensation step 

13/ 

Second considered case  
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In all cases we need an information on emissivity to get temperature 
• relations for emissivity : only for ideal materials, for example Drude law for pure metals     

(  satisfactory only for                , not valid for corroded or rough surfaces) 

• databases for specific materials in particular state of roughness, corrosion, coatings, 

contaminant, moisture content … 

 

 

 

 

 

 

 

 

 

 

 

 

• The only practical solution : simultaneous temperature and 

emissivity evaluation 

 

µm2

    What about emissivity ?  

  21 
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Single-color pyrometry 

  One has to estimate the emissivity (a priori knowledge) 

 

• Sensitivity of temperature to an error in emissivity estimation: 

 

 

 

 

• Sensitivity to emissivity error drops at shorter wavelengths          advantage in 
working at in the visible or UV spectrum 

• However, the signal drops too !                                       
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at 1µm    and T= 1100K  : -0.8K/% error 

at 10 µm and T= 300K    : -0.6K/% error 

• Measurement is performed in a narrow or large spectral band 

• In both cases, after sensor calibration, the retrived radiance is of the form 

One equation, two unknown parameters 

a compromise 

is needed 
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Two-color pyrometry  (1/4) 

• Adding a new wavelength:  

 

• Two spectral signals: 

 

 

•  by ratioing the signals: 

 

 

 

• The problem can be solved if one has a knowledge about the emissivity ratio 

(less restrictive than the common « greybody » assumption :                      ) 

• Sensitivity of temperature to an error in emissivity estimation: 

 

     
     








TBTL

TBTL

,,

,,

222

111





12

21
12







effective wavelength: 

   21  













2

2

1

1

2

12







 dd

C

T

T

dT

The effective wavelength is higher 

than             : bad news !! 

   
T

C
LL

12

2

2

15

22

5

11 lnlnln



 












Single color Bi-color 



 d

C

T

T

dT

2



- adds an equation 

- adds an unknown parameter, namely the 

emissivity a this additional wavelength 

21,
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1-color 2-color 3-color 

Input 

Input   (log()) value « slope » « curvature » 

Error amplification 

on temperature A 

Example 1    
8µm 8µm; 9µm 8µm; 9µm; 10µm 

-0,5 -4,5 -22,5 

Example 2   
9µm 9µm; 10µm 9µm; 10µm; 11µm 

-0,56 -5,6 -30,9 

2- and 3- color pyrometry vs 1-color pyrometry 
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
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• Sensitivity to emissivity errors can be reduced by spreading the two 
wavelengths 

• (false) “dilemma” between spreading the wavelengths and the classical “greybody” 
assumption               

• Advantage of ratio pyrometry over single color pyrometry : immunity to partial 
occultation, to variations of optical path transmission 

 

 

• Emissivity-enhanced 2-color pyrometry 

 
Additional reflective surface for introducing a cavity effect: 

- increase of both apparent emissivities 

- reduction of spurious reflections 
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Two-color pyrometry  (2/4) 

J.-C. Krapez at al., 1990  
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Two-color pyrometry  (3/4) 

 

• 2-color photothermal pyrometry: 
A laser is used for periodically heating the surface.  

A lock-in detection is implemented to capture 

the modulated radiance deprived from any reflection. 

 

 

 

 

1st order development: 

 

 

The signal (amplitude) ratio is: 

 

 

laser 

chopper 

detector 

sample in 

furnace 

interference filter 

T. Loarer at al., 1990 

S. Amiel , 2014  
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



Bispectral MWIR camera by 
SOFRADIR : 
Band 1 : 3.5-4.0µm 
Band 2 : 4.6-5.0µm 
640x505 pixels 
Staggered sensitive areas 
24µm pitch 
 

            LTBTL 1,,

     dTT
T

B
TBdTTB 000 ,,, 




 

S. Amiel , 2014  
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Two-color pyrometry  (4/4) 

 

• MWIR + LWIR   two-color camera 
Prototype developed by OSMOSIS 

(joint laboratory SOFRADIR+ONERA) 

640x512 pixels 
Staggered sensitive areas 

24 µm pitch 

Band 1 : 3.5-5 µm 
NETD: 30 mK 

Band 2 : 7-9,5 µm 
NETD: 39 mK 

G. Druart et al., 2014  
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The two left  unknowns: h and temperature T are 

determined from the two radiance measurements 
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Two-color pyroreflectometry 

Indirect evaluation of emissivity via directional reflectance at two wavelengths 

D. Hernandez et al., 

2005, 2009, 2014 

     TBTL ,,  

     1

     h  

directional hemispherical reflectance  

diffusion factor :                   is assumed 

independent of wavelength 

  hh 

       2,1,1,   iTBTL iii h

+ two measurements of dir-dir reflectance: 

with 20mW laser diodes at 1.31 and 1.55µm  

  2,1 ii

Two radiance measurements: 
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Multiwavelength pyrometry (MWP) 

• Emissivity-temperature separation is essentially an underdetermined inverse 

problem: 

 

 
 

whatever the number of wavelengths, there is always one more unknown parameter than 

available equations 

• Two types of methods: 

• reduce by one the number of degrees of freedom of the discretized emissivity 

spectrum 

• N equations, N unknowns                   the problem should be solvable (at first glance…)  

   interpolation-based method 

• regularization by using a much lower-order emissivity model (continuous or step 

functions) 

• N equations, M unknowns  (M<<N)                   

  least-squares based method 

 

• Persistent controversy: does MWP really bring an advantage  

 with respect to single-color or two-color pyrometry ?  

      NiTBTL iiis ,1,,  N observables 

N unknown parameters 
1 unknown parameter 
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The constant parameter of the polynomial of degree N-1 passing through the 

N values                    gives the “temperature error” 
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i.e. extrapolation result at  

Multiwavelength pyrometry. Interpolation-based 
method (1/3) 

“Just as needed” regularization : the N emissivity values            are represented by 

only N-1 parameters, e.g. the N-1 coefficients of a N-2 degree polynomial 

By considering the Wien approximation and taking the logarithm, Coates showed that this 

may lead to “catastrophic” results: 
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Multiwavelength pyrometry. Interpolation-based 
method (2/3) 

There would be no error  if a N-2 degree polynomial could be found passing exactly 

through the N values                            highly unlikely !                          
 

 
 '112 TTC 



   ln

? 

? 

Therefore, in general, one is exposed to the 

deleterious properties of polynomial extrapolation. 

Unfortunately, extrapolation based on polynomial 

interpolation leads to increasingly high errors as the 

polynomial degree rises !  

unpredictably  high errors when adding 

new wavelengths 

Previous errors are systematic, i.e. method errors (they are observed even with an errorless 

signal !). 

 

Same bad results are observed in the presence of measurement errors (they actually add to 

the previous ones !). 

  The calculated temperatures are increasingly sensitive 

to measurement errors as the number of channels 

increases  : (kind of) OVERFITTING problem  

 iln
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Multiwavelength pyrometry. Interpolation-based 
method (3/3) 

Example of tricolor pyrometry when                progressively departs from linearity   

 

   ln

 '112 TTC 

T=600K T=1000K 

0 0 

9 26 

47 137 

105 331 

2

Error in temperature (K) 

 iln
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Multiwavelength pyrometry. Low-order emissivity 
models (1/2) 

Some examples of lower order models : 

  2,...,1
0

 


NmNia
j

i

m

j

ji 

   2,...,1ln
0

 
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NmNia
j

i

m

j

ji 

    Nia ii ,...,111
2

0  

- Polynomials of       or         for              

- Functions involving the brightness temperature 

- Sinusoïdal function of wavelength 

- Step function (grey-band model with        bands). 
- 2 or more channels per grey band 

- limiting case :                  with N-2 single-channel bands and 1 dual channel band 

 sR LBT ,1 

21 21   ln

bN

A (seamingly adequate) remedy: reduce the model complexity ! 

emissivity 



14

8





NN

N

b

B1 B2 B3 B4 

1 NNb
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Multiwavelength pyrometry. Low-order emissivity 
models (2/2) 

Observable : 

Wien approximation 

Polynomial approx. of  

Minimizing the weighted sum 

   iiii eCTLY  1

5
,ln 

  iln
Linear least squares 

problem 

Observable : 

Planck’s law 

Polynomial approx. of  

Minimizing the weighted sum 

  iii eTLY  ,
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Non-linear least squares 
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measurement error (noise) 
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Multiwavelength pyrometry. Linear least squares 
problem (1/5) 

   
 
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One is looking for the polynomial coefficients and the temperature such that: 

 

 

 

Parameter reduction for numerical purposes: 

 

 

Sensitivity matrix to the reduced parameters: 
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Sensitivity to the 1/T term is very smooth, 

close to linear 

strong correlation between 

the parameters (near collinear 
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Multiwavelength pyrometry. Linear least squares 
problem (2/5) 

Assuming that the measurement errors are additive, uncorrelated and of uniform variance, 

an estimation of the parameter vector        in the least squares sense is obtained by solving 

the linear system : 

 

Near collinear sensitivity vectors                 high condition number of the matrix  

The condition number (ratio of maximum to minimum eigenvalue) provides an upper 

bound of the rate at which the identified parameters will change with respect to a change of 

the observable (sensitivity to measurement errors) 
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Bad results are expected with polynomial models of degree  >1, and with grey-band model with  
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Multiwavelength pyrometry. Linear least squares 
problem (3/5) 

Condition number : only an upper bound of error amplification.  

The diagonal of the covariance matrix                is of greater value for analyzing the error 

propagation 

 

 

 

 

 

Error amplification factors                

 

  1
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T

P diag

assumed uniform variance of the observable  

error around the mean estimator value due to radiance error propagation to the parameters 

(does not include the bias due to the model error, i.e. misfit between the true emissivity and 

the emissivity model)  
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Multiwavelength pyrometry. Linear least squares 
problem (4/5) 
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Multiwavelength pyrometry. Linear least squares 
problem (5/5) 

 

Polynomial degree 
T  (K)   

0 1.5 0.02 

1 9.4 0.13 

2 64 0.83 

 

Polynomial 

model 

Grey-band 

model 

Application : 

- target at 320K,  

- 1% radiance noise 

- radiometer with seven wavelengths between 8µm and 14µm  

 

Number of bands 
T  (K)   

1 1.5 0.020 

2 2.6 0.035 

3 3.7 0.049 

4 5.7 0.076 

5 6.7 0.090 

6 7.2 0.094 

 
The mentioned standard errors only reflect what happens when noise corrupts the radiance 

emitted by a surface which otherwise perfectly follows the chosen model (polynomial 

or staircase model) 



E
R

IC
E

 2
0
1
6
 

33/ 

Multiwavelength pyrometry. Another look to the ETS 
problem (1/3) 

                  is simply: 

 Ti
ˆ,ˆ 

   
 
 

Ni
TB

TB
T

i

i
ii ,1

ˆ,

,ˆ,ˆ 





“true” emissivity spectrum  “true” temperature  

      NiTBTL iii ,1,,  

The problem to solve is to find the temperature value T          

and the emissivity spectrum  

such that (no noise at this stage): 

  Nii ,1

There is an infinity of solutions. To any temperature value          one can associate an 

emissivity spectrum               such that         and                are perfect solutions : 

T̂

T̂  Ti
ˆ,ˆ 

      NiTBTTL iii ,1ˆ,ˆ,ˆ,  

 Ti
ˆ,ˆ 

“virtual” temperature  
“virtual” emissivity spectrum  
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Multiwavelength pyrometry. Another look to the ETS 
problem (2/3) 
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values  are aligned 

        values follow a 6-

order polynomial 

T̂ T̂

KT 320

“true” temperature 

Let us now consider a 1-degree emissivity model. 

Which one, among all these candidate profiles, is closest to a straight line ? 

 i

 i

 T̂,ˆ 

KT 320

“true” temperature 
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Real spectrum is regular Real spectrum is irregular 
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Multiwavelength pyrometry. Another look to the ETS 
problem (3/3) 

The least squares method selects, among all possible solutions, the one which 

conforms at best to the chosen model, taking into account a weighting by 
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Errorless radiance leads to a 15K temperature bias and to 0.06 to 0.2 emissivity underestimation 

(systematic or model error) 

With a 2-degree polynomial model, the results are much worse and even unrealistic :     =230K,       >2 

! 
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7-channel pyrometer [8-14µm] 

the solution which is closest to 

a straight line 

linear profile fitting the 

proposed solution 

“true” radiance (errorless) 

radiance with linear 

emissivity profile 

 TB ˆ,

T̂ ̂

Common (wrong) belief : « the chosen model 

is used to fit the true emissivity profile  » 

        values follow a 6-

order polynomial 

 i
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Multiwavelength pyrometry. Non-linear least squares 
and Monte-Carlo analysis (1/4) 

• Measurements are simulated by adding artificial gaussian noise to the theoretical 

emitted radiance (std. dev.: 0.2% to 6% of the maximum radiance value) 

• Statistical analysis on 200 simulated experiments 

• Chosen model : 1-degree polynomial 

0.2 0.5 1 2 3 4 5 6
10

-2

10
-1

10
0

Radiance error (%)

E
m

is
s
iv

it
y
 R

M
S

 e
rr

o
r

0.2 0.5 1 2 3 4 5 6
10

0

10
1

10
2

Radiance error (%)

R
M

S
 e

rr
o

r 
(K

) 

true emissivity is regular (linear) 

true emissivity is irregular (6-degree 

polynomial) 

x 
Emissivity error Temperature error 

High systematic error when the emissivity model (1-degree polynomial) does not match 

with the true profile ( >15K RMS !). 

Otherwise, 0.1 emissivity error and 8K temperature error for 1% radiance error. Same holds when the 

true profile departs by 1% from a straight line ! 
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Multiwavelength pyrometry. Non-linear least squares 
and Monte-Carlo analysis (2/4) 

• Does it help to increase the number of spectral channels ? 

 

x 
Emissivity error Temperature error 

When the emissivity model (1-degree polynomial) perfectly matches with the true profile we observe 

the classical           uncertainty reduction. 

Otherwise, emissivity and temperature RMS error remain high (systematic errors dominate); they 

even increase with N for the presented example ! 

Similarly disappointing results with the grey-band model (next two slides). 
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Multiwavelength pyrometry. Non-linear least squares 
and Monte-Carlo analysis (3/4) 

• Same as before with now the straircase model. 

  Two options : the staircase model is able to fit the real emissivity profile or not 

true emissivity is a 6-order 

polynomial sampled at N 

points 

x 

“true” emissivity is 

obtained after averaging a 

6-order polynomial in each 

greyband  

(here Nb=3 greybands) 

the staircase 

model cannot 

match with the true 

profile 

the staircase 

model can match 

with this 

(synthetic) “true” 

profile 

x x 

x x 
x x x 
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Multiwavelength pyrometry. Non-linear least squares 
and Monte-Carlo analysis (4/4) 

• Same as before with now the straircase model. 

 
true emissivity is a 6-order 

polynomial 

x 

Emissivity error Temperature error 

RMS errors rise proportionnaly to       when the model can match with the “true” profile. 

Otherwise, high systematic errors. Unpredictably high variations with       . The least bad results are 

observed for intermediate values of  

No better results than with a linear model. 
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Example with N=30 channels 

and 1% radiance noise 
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Conclusion on LSMWP with low-order emissivity 
models 

• Reasonable RMS values can be obtained only when the implemented 
emissivity model perfectly matches the real emissivity spectrum 

• Otherwise, important systematic errors are encountered 

• Question : when can we guaranty that a specific emissivity model and 
the real emissivity spectrum perfectly match ? 

• LSMWP focuses on profile shape instead of magnitude                 

 

  One should add a penalization based on the emissivity level 
(mean or local) in order to force the solution to remain close to a 
predetermined level (a priori information) 

 

  When using only the emitted spectral radiance, there is no 
valuable reason for implementing MWP instead of the simpler  

 one-color or bispectral pyrometry  
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Conclusion on LSMWP with low-order emissivity 
models 

• The implicit weakness of  LSMWP: 

 

  


 
N

i
iiii TBL

1

222 ,

j

i

m

j

jii a  



0

model

Minimizing the cost function               simply means 

that one succeeds  in getting                      close to 

the measurements 

2

 TB ii ,
model



iL

By no means                                  is expected to be « minimized » by some wizard with 

the help of some « hidden » process ! 

  
2modelreal

ii 
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ETS in the field of remote sensing  

Low-altitude airborne remote sensing 

High-altitude airborne remote sensing 

Polar-orbiting satellites (low-earth orbit) 

Geostationary satellite  
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11 

5 

- Michelson-type IR interferometers 

- 1016x440 IRFPAs, 25µm pitch 
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Spectra of two pixels: polystyrene target (green), concrete target (red),  for the LWIR (a) and the MWIR (b). 

Monochromatic image (λ = 4.8μm, 

Δλ = 0.025μm) from the MWIR 

hyperspectral cube. 

 

Green cross : polystyrene target 

Red cross : concrete area 

Coudrain, Opt. Exp. 2015 

First results of the dual band MWIR+LWIR 

spectro-imaging system  SIELETERS 
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Specific features of IR remote sensing 

• Measurements are highly conditioned by the radiative properties of the 

atmosphere (transmission, emission toward the earth surface and then 

reflection, emission along the optical path, scattering, …). 

• Optical path in air from ~100 m to several km. 

• Atmosphere compensation is necessary 

• Atmosphere properties are considered uniform in images of several km2 

• Footprint is generally large: from ~10 cm for low altitude airborne sensors to ~2 

km for sensors on geostationary satellites         aggregation of various 

materials and temperatures (desaggregation = inversion problem) 

• In [8-14µm] band, natural surfaces (soil, vegetation, water) have high 

emissivity values (> 0.9). Generally considered as Lambertian. 
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Evaluation of atmosphere contributions 

            LTBTL 1,,

• Example of a grey surface 
(=0.9) at T=313K 

• Radiative transfer simulations 
with MODTRAN; (mid-latitude 
summer atmospheric model; 
rural aerosols) 
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Evaluation of atmosphere contributions 

• Example of a grey surface 
(=0.9) at T=313K sensed by an 
IR instrument at 1900 m altitude. 

• Radiative transfer simulations 
with MODTRAN; (mid-latitude 
summer atmospheric model; 
rural aerosols) 

        ,,,,,,,,  LTLTLs

            LTBTL 1,,

at-sensor radiances 
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Atmosphere separate compensation 

Radiative transfer simulation (MODTRAN, MATISSE…) with: 

• standard atmospheric models (temperature+humidity 

profiles)/climate/season/aerosols 

 

• radiosonde data              profiles of pressure, temperature, constituents 

 

• IR sounding near 4.3µm for CO2 and between 4.8-5.5µm for H2O + 

neural networks allows retrieving mean atmosphere temperature and 

columnar water vapor under the sensor. These values are then used 

to scale a set of standard atmosphere profiles used in MODTRAN and 

get closer to the true atmosphere profiles. Final MODTRAN computation 

 

 

  ,,

  ,,L

 L
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• Proper atmosphere compensation provides ground 
leaving radiance: 

 

 

 

 
 

• SpSm method (Spectral Smoothness) 
• emissivity spectrum is far smoother than downwelling radiance 

 

• Multi-temperature inversion 
• performing measurements at least at two different temperature 

levels  

 

Emissivity-Temperature separation 

 
   

 
        




 






 LTB
LTL

TL
s

1,
,

,

 
   
   













LTB

LTL

ˆ,

,
ˆEmissivity estimation            from a temperature estimation       according to  T̂ ̂

one more unknown 

N more data 

is the ill-conditionning 

solved ??? 
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Spectral Smoothness method (SpSm) 

 
   
   













LTB

LTL

ˆ,

,
ˆ

• When the temperature estimation     is in error, the profile 

will contain detailed spectral features originating from                 

 and                (gas absorption bands) 

 

• Adjust       until        is deprived of these artifacts 

 

T̂

 L TL ,

T̂  ̂ “smooth” emissivity spectrum 

Knuteson, 2006 

• Smoothness criteria : minimization of std. dev. between          and its local mean, correlation 

product between         and           , … 

• SpSm requires the atmospheric compensation to be very precise 

• SpSm requires high spectral resolution ( < 10 cm-1)  in order to capture sufficient details of the 

atmosphere spectral features. Restricted to hyperspectral data. Spectral calibration errors are 

highly detrimental 

• Radiance error of 0.5%          1.6K RMS and 0.8K bias for temperature and 0.023 RMS and 0.027 

bias for emissivity  

 L

 ̂
 ̂



E
R

IC
E

 2
0
1
6
 

51/ 

However, when using Wien ’s approximation, it can be shown that, when there is no 

reflection contribution, the problem remains ill-conditionned ! 

• With errorless radiance, there is an infinite number of solutions 

  defined by: 

 

 

• In case of two temperature measurement,  

       the sensivity matrix is: 

 The sensitivities are correlated since 

     !!  

 

 

However, degeneracy could be alleviated thanks to the presence of reflections 

Inversion robustness depends (again) on the spectral richness of the reflected radiance 

 

Multi-temperature method : a pitfall ? (1/3) 

• NT temperature levels 

• N channels 

• N+NT unknowns 

• NxNT equations 

Solvable (in principle) 

as soon as N ≥ 2 

cst
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
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

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
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

NN
refN
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refN
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C

T

C









I

I

X

  0det XX
T

one additional unknown parameter 

but N more data ! 

Does it solve the  

ill-conditionning ??? 
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Multi-temperature method (2/3) 

• The problem remains badly conditioned when using Planck’s law 

• Degeneracy is alleviated thanks to the presence of reflections 

• Inversion robustness depends on the spectral richness of the reflections 

Case of two temperatures. 

Nonlinear least-squares approach for identifying the N emissivities and the two 
temperatures 

 

 

 

 

Illustration for the case of a greybody 0.9) at T1 =320K. 

Second temperature is 1K, 5K, 10K or 30K higher. 

Downwelling radiance is either: 

• blackbody radiance at 300K 

• same by weighting with a uniform random distribution (simulation of the presence of 
detailed spectral features) 

Standard errors of identified parameters obtained from covariance matrix (local 
linearization) 
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Multi-temperature method (3/3) 

10
0

10
1

10
2

10
-1

10
0

10
1

Nb. of channels 

E
m

is
s
iv

it
y
 R

M
S

 e
rr

o
r

10
0

10
1

10
2

10
0

10
1

10
2

10
3

Nb. of channels 

T
e

m
p

e
ra

tu
re

 R
M

S
 e

rr
o

r 
(K

)

10
0

10
1

10
2

10
-2

10
-1

10
0

10
1

Nb. of channels 

E
m

is
s
iv

it
y
 R

M
S

 e
rr

o
r

10
0

10
1

10
2

10
-1

10
0

10
1

10
2

10
3

Nb. of channels 

T
e

m
p

e
ra

tu
re

 R
M

S
 e

rr
o

r 
(K

)

T 
1K 

5K 

10K 

30K 

T 
1K 

5K 

10K 

30K 

smooth 
downwelling 
radiance 

spectrally rich 
downwelling 
radiance 

1% radiance noise 

Better results are obtained by increasing the number of channels and the 
temperature difference 

High constraints to get a temperature RMS error lower than 1K ! 

Constraints on images co-registration, on emissivity stability. 

40K to 4K 
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Pyrometry : a Bayesian perspective (1/3) 

• Unknown parameters :  

• Parameters are uncertain; the information available before the 

observation is represented by their prior distributions : 

• Experimental data are radiance observations: 

 

• The conditional propability for measuring                      given the 

parameters is the likelihood: 

 
 

Classical inference is looking for the parameters values that maximise the likelihood 

When the noise is Gaussian with covariance matrix       :      
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Pyrometry : a Bayesian perspective (2/3) 

• Bayesian inference about the parameters is based on the posterior probability 

density as conditioned by the data (Bayes theorem): 

 

 
The denominator is considered as a normalizing constant, the analysis is performed about: 

 

        

       mode(s), mean, confidence intervals 

   

• When one is essentially interested in evaluating temperature, emissivity can 

be considered as a nuisance variable              marginalization 

 

 

• Priors :  
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Non-informative: 

-           (T acts as a scale) 

 

-           (location parameter)  

 

 

  TdTTp 

Specific: 

- 

 

- 

 

-  Joint propability           from analysis of databases, 

eventually coupled with other information (ex: 

knowledge on ageing, corrosion, expected vegetation 

species…)  
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Pyrometry : a Bayesian perspective (3/3) 

• Simple example : 1-color pyrometry 
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• Marginalization to get rid of the nuisance parameter (emissivity): 
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• Example : T=300K 
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The « effective » emissivity as considered for 

computing the input raw radiance was:  

0.85, 0.9, 0.95, 1 

 

 

 

- The modes are within +/-5K of the true 

temperature 

 

- Possibility to evaluate the mean, the 

std dev., the quartiles… 

 

- For more complex situations (higher 

number of parameters, more 

wavelengths) one possibility is to apply 

Markov Chain Monte Carlo methods 

 

 

 

Posterior distribution for 

temperature in case of four 

different radiance values  
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Conclusion 

• Radiative temperature measurement 

• advantage : non-contact 

• disadvantage : under-determined inverse problem due to unknown emissivity 

• « Mirage » or « lure » of multiwavelength pyrometry 

• only very low order emissivity models have a  

chance to provide useful results 

• no significant benefit with respect to single or  

two color pyrometry 

• « Mirage » or « lure » of the multi-temperature method 

• ineffective except in case of reflections from spectrally rich environment 

• additional constraints 

• IR remote sensing takes profit from the high emissivity of natural 

surfaces and from their spectral smoothness with respect to 

downwelling radiance 

• Bayesian methods 

• High flexibility for integration of prior information on emissivity (i.e. expected materials, 

expected surface state, …) 

except in case of well-

characterized target material 
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Further reading: 

Krapez, J. C. (2011). Radiative measurements of temperature. In: 

Thermal measurements and inverse techniques. CRC Press, Taylor & 

Francis Group, Chap. 6. p. 185-230. 
https://www.crcpress.com/Thermal-Measurements-and-Inverse-Techniques/Orlande-Fudym-Maillet-Cotta/p/book/9781439845554 
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